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Abstract. We consider the pure Z ( N )  spin systems (including the standard king and Potts 
models) as well as generalised gauge systems (plaquettes or more complex simplex) in 
ddimensional hypercubic lattices. These models are self-dual, and we show how this 
duality can be thought of as a series-parallel transformation. The simplicity of the equations 
enables conjectures to be made on the approximate critical frontier of the diluted version of 
the above systems, including some particular asymptotic behaviours which we believe to be 
exact. As an illustration the d = 2 diluted Z(4) spin system is discussed in some detail: for 
those regions where exact results are available the agreement is satisfactory. 

1. Introduction 

Since the Kramers and Wannier (1941) discussion of the king model, duality arguments 
have been a powerful tool for discussing the location of critical frontiers (CF) in various 
statistical systems such as bond percolation (Sykes and Essam 1963) and the N-states 
Potts model (Potts 1952, Kim and Joseph 1974). Quite general results (concerning in 
particular the Z ( N )  models) have been obtained by Wu and Wang (1976), Alcaraz and 
Koberle (1980, 1981) and Savit (1980). 

On different grounds Domb (1960), Nelson and Fisher (1975) and Yeomans and 
Stinchcombe (1979) (among others) have used in the discussion of Ising models a 
convenient variable, namely t = tanh J/kBT (J is the exchange coupling constant and T 
the temperature), referred to hereafter as transmissivity (Tsallis and Levy 1980, Levy et 
a1 1980). This quantity can be extended (Tsallis and Levy 1981, Tsallis 1981) to cover 
the N-states Potts model; its expression is given by 

1 - exp(-NJ/k€j T )  
l+(N- l )  exp(-NJ/kBT)' 

t s  

Remark that in the limit N + 1, t equals 1 - exp(-J/kBT), thus reproducing the variable 
which establishes the isomorphism with the bond percolation problem (Kasteleyn and 
Fortuin 1969). 

The main advantage of the t variable is to provide a probability-like algorithm to 
calculate the equivalent transmissivity ts of a series array of two bonds whose trans- 
missivities are tl and tz, namely 

t, = t1tz .  (2) 
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5 88 F C Alcaraz and C Tsallis 

If the array is a parallel one the equivalent transmissivity tp  satisfies 

where 
(3) D D D  t ,  = t l  t 2  

1 - ti 
1 + (N - 1)ti t? = (i = 1,2, p). (4) 

The superscript D stands for dual (we refer here to the standard duality: see § 2); let us 
stress that through transformation (4), the series and parallel composition algorithms 
(respectively equations (2) and (3)) become one and the same. 

In § 2 we extend the transmissivity to cover spin (see Wu and Wang 1976) and 
generalised gauge Z(N) systems which contain several coupling constants, and we 
exhibit that the standard dual transformation can be very simply expressed as a 
series-parallel transformation. 

The simplicity of equations (2) and (3) has enabled quite satisfactory suggestions 
(Tsallis and Levy 1980, Levy et a1 1980, Tsallis 1981) to be made about the CF of the 
bond-dilute (or even bond-mixed) Ising and Potts models. It seems therefore quite 
natural to put forward ( 0  3) analogous suggestions for the CF of diluted versions of 
general Z ( N )  systems (only d-dimensional hypercubic lattices are considered). The 
particular case of the d = 2,Z(4)  spin system is treated in detail: some already known 
numerical results are exactly or approximately recovered and a few predictions are 
proposed. 

2. Transmissivity and duality in pure Z ( N )  models 

Let us consider a site (O-simplex) with which we associate a Z(N) random variable 
S =exp(i2~n/N) where n = 0,1,2, . . . , N - 1. Then we construct a bond (l-simplex) 
by joining two such sites (denoted 1 and 2) and we associate with it the Z(N) random 
variable A I  (the subscript 1 refers to l-simplex) defined by 

A I  = STSl = exp[i2w(n2 - nd/N]. 

Let p'"' be the probability that this variable takes the value ei2"". We define the 
N-dimensional vector transmissivity t through its components given by 

N-1 
(a =o,  1 ,2 , .  . . , N - 1 ) ;  

p = 0  

hence 

( 5 ' )  
2T 1 N-1 

N "=o 
p'@' = _. P ' e x p  ( -i-ap ) ( p = 0 , 1 , 2  ,..., N-1). 

Remark that 

(6) 

and that p"-@'=p'@' (Vp) implies that t'") is a real quantity ( V a ) ;  the { t ( a ) }  are 
proportional to the {A (a + 1)) of Wu and Wang (1976). Remark also that in the case of a 
Potts bond we have that p ' O ' =  1/[1+ ( N -  1) exp(-NJ/kBT)J and, for p # 0, 

(7) 

t'O' = 1, t ( N - a )  = rt(a)1*, 

p'@' = exp(-NJ/kBT)/[l + ( N -  I) e x p ( - ~ ~ / k ~ T ) I ;  

therefore t'" for p # 0 reduces to expression (1). 
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Let us now calculate the equivalent transmissivity t, of a series array of two Z(N) 
bonds whose transmissivities are t l  and t z .  If we take into account that the equivalent 
probabilities are given by 

@ = O  

we immediately obtain that 

( L Y = O ,  1,2, .  . . ,N-1). tp)  = (U) (U) t l  t z  

If we have instead a parallel array, the equivalent probabilities are given by 

which provides the following relations: 
t F ) D  = tY)D t z  (a)D ( a = 0 , 1 , 2 , . .  ., N-1) 

where 
xN-1 (8 )  

t;.m)D ~ p = o  ti ~ x P ( - ~ z . ~ ~ ~ Y P / N )  P?' 
xN-1 ( 8 )  =o 

8-0 t j  Pi 
Let us stress that through transformation (12) the 
(equations (9) and (1 1)) become one and the same. 

It is interesting to remark that the real quantity 

series and parallel algorithms 

transforms under duality similarly to a resistance (or a conductance), i.e. 

pD = l /p.  

Furthermore the quantity 

7 ( f i p  - 1)/(N - 1) (13) 

T~ = (1 - 7)/[1+ (N - 1)7]. 

transforms under duality like the transmissivity of a Potts model (see equation (4)), i.e. 

(14) 

Finally we may define another interesting quantity (used in 0 3), namely 

ln(JEp) ln[l+ (N - 1)7] 
1nN ' 

We immediately verify that under duality U transforms like a probability, i.e. 

uD=l-u.  (16) 

This variable generalises the s variable introduced in Levy et a1 (1980) and extended by 
Tsallis (1981) (see also Tsallis and de Magalhles 1981). 

We shall now restate on more general grounds what we have said until now (and 
by the way clarify the nomenclature introduced in equation (12)). Let us consider a 
square plaquette (hypercubic s-simplex); its border is constituted by four bonds 
(2s (s - 1)-simplex). With the ith bond ((s - 1)-simplex) we associate a Z(N) random 
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variable Si = exp(i2vni/N) and with the plaquette (s-simplex) we associate another 

STS; . . . SfS,,, . . . S2,) where the prime stands for oriented product (this product runs 
over all the bordering bonds ((s - 1)-simplex) if we are dealing with a non-elementary 
plaquette (s-simplex)). The plaquette (s-simplex) will be said to be a-frustrated when 
A2(A,) equals ei2‘“” with a = 0, 1,2,  . . , , N - 1; it is clear that O-frustrated cor- 
responds to not frustrated. Let P ( ~ )  be the probability that the plaquette (s-simplex) is 
a-frustrated. Through equation ( 5 )  we define the transmissivity t associated with the 
plaquette (s-simplex). 

Two plaquettes (s-simplex) denoted 1 and 2 will be said to be in series if they share 
one and only one bordering bond ((s - 1)-simplex); the Z ( N )  random variable asso- 
ciated with this array is obtained by the product (A2)1(A2)2((As)l(As)2), therefore 
equations (8) and (9) still hold in the present general picture. Two plaquettes will be 
said to be in parallel if they share the whole border; the probability of this array being 
a-frustrated is still given by equation (10) which implies equations (11) and (12). 

It is well known (Yoneya 1978, Savit 1980) that through duality transformation an 
s-simplex in a d-dimensional original lattice goes to a (d - s)-simplex in the dual lattice. 
Consequently the transmissivity f of that s-simplex in the original lattice is related to the 
transmissivity (denoted by tD) of the (d - 3)-simplex in the dual lattice through equation 
(12). 

Let us now perform an application of the present formalism. We shall consider the 
general ferromagnetic Z ( N )  bond system in the square lattice; its Hamiltonian X (or 
action) is given (Alcaraz and Koberle 1980, 1981) by 

Z ( N )  variable denoted by A2(A,), defined by A2 = Si =SI * *  SzS3S4 (A, = llir) Si = 

with 

the sum of equation (17) runs over all the nearest neighbours and 
N/2 if N a 2; in the limit N + 1, 
(mod N) is given by 

is the integer part of 
equals one. The probability that n l  - n2 = a 

which, through equation ( 5 ) ,  leads, for N 3 2, to 

Remark that t(aL) = c ( ~ - ” )  = (t‘”)*. If we consider the particular case of the Potts model 
(for N > 2, K1 = K2 = . . . = KfiWl = i(3 + ( - l )N)K~,  hence t‘” = t”’ = . . . = t“-”) we 
immediately verify that equation (20) recovers equation (1). 

If we now substitute equation (20) into equation (12), we obtain 

(21) tla)D - - e-h(a) /e -h(0)  

If finally we invert equation (20) and replace it in equation (21) we obtain 
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which, through notation changes, corresponds precisely to the exact dual trans- 
formation (Cardy 1980, Alcaraz and Koberle 1980,1981). In the particular case of the 
Potts model we immediately verify that equation (22) recovers equation (4). If we take 
into account the self-duality of the square lattice and the fact we are considering bonds 
(whose transformed simplex are still bonds) we have that the general self-dual frontier 
(which contains all the self-dual points and only them) is given by 

(23) 
This equation uniquely determines the location of the critical frontier in the region of 
the parameter space where it is unique (Cardy 1980, Alcaraz and Koberle 1980,1981). 

For the general four-dimensional Z ( N )  hypercubic lattice gauge model (whose 
Hamiltonian-invariant through local gauge Z ( N )  transformation-is analogous to 
that of equation (17)) as well as for the general three-dimensional Z ( N )  cubic lattice 
gauge model including Higgs fields, it is straightforward to verify that equation (12) 
corresponds precisely to the exact dual transformation (Alcaraz and Koberle 198 1). 

D t = t ,  

3. Diluted Z ( N )  models 

We shall now consider a bond-diluted version of the model described by Hamiltonian 
(17)-(18); in other words its coupling constants will now be random variables whose 
probability distribution is 

A A 

p = 1  p=1 
PK(Kl ,K2, . . . ,KA)=( l -p)  n S W , ) + P  n W p - K O p )  (24) 

where { K i }  are known constants. This distribution immediately leads to the dis- 
tribution Pt for the transmissivities: 

where the {tbp)}’are related to { K i }  through equation (20) with {KO,} playing the role of 
{KO}. The probability distribution of the dual variable ID is given by 

A A 

p = 1  p=1 
Pp(t(1’D,f(2’D, . . . , f ( A ) D ) = ( l - p )  n S(t‘P’D-l)+p n S(t‘5’D-tb0’D) 

where {rbp’D} is related to {tb”} through equation (22). The probability distributions 
P,(T) and P ] ~ ) ( T ~ )  of the variables 7 and T~ respectively defined by equations (13) and 
(14) are given by 

PT(T) = (1 - P ) S ( T )  + P S ( T - T o )  (27) 
and 

where T~ is related to {tbp’} through equation (13), substituting t‘“’ by tp’. 
Following along the lines of Tsallis and Levy (1980), Levy et a1 (1980) and Tsallis 

(1981), we are led to suggest three slightly different approximations of the CF in the 
region of the parameter space (whose dimensionality is + 1) where the transition is 
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unique. Our three present proposals are 

(t“’)p, = (t“’)pp, 

( d P ,  = ( d P ?  

and 

( d P ,  = ( d P ?  (31) 

which, through use of definitions (13) and (15), respectively lead to 

pth1’ = 1 - p + ptpD, (29’) 
1 - 70  

1 + (N - 1 ) r o  
pro = 1 - p  + p  

and 

1 + (N - 1)70 = N1’2p.  

(30’) 

We remark that in the particular case p = 1 (pure model) all three equations (29‘), (30’) 
and (31’) are contained in the exact equation (23) (as a matter of fact it is known that for 
the pure case these equations provide the same information if N < 6 (Cardy 1980, 
Alcaraz and Koberle 1980); if N 2 6  equation (29’) or equation (30‘) or equation (31’) 
cannot univocally determine the self-dual frontier but only a hypersurface that contains 
it). In the limit N + 1 all three equations lead to one and the same result, namely 

(32) 

which is known to be exact (Southern and Thorpe 1979, Turban 1980, Tsallis 1981); we 
recall that, in the limit N + 1, tb” = 1 - tb’)D = T ~ .  Furthermore, we verify that all three 
equations provide T~ = 1 for p = f (pure bond percolation limit) and that no solution 
exists for p <i: this result is commonly believed to be exact (Southern and Thorpe 
1979, Turban 1980, Tsallis 1981, among others) for the Potts model and we conjecture 
here that it remains true for the more general model presently discussed. The 
conjectures (29), (30) and (31) recover, for the Potts model, completely analogous 
conjectures included in Tsallis and Levy (1980), Levy et aZ(1980) and Tsallis (1981) (it 
is convenient to recall at this point that the present model extends the Potts one only if 
N 24). In these references it is shown that, for the Potts model, the (T conjecture 
(equation (31)) is numerically more satisfactory than the others (equations (29) and 
(30)); it is therefore natural to expect that this is still true in the present generalised 
picture. 

From the very beginning we have considered isotropic ferromagnetic models, but no 
major difficulty exists if crystalline anisotropy is included. In the particular case of the 
square lattice we can follow along the lines of Tsallis (1981) and propose for the 
approximate CF the following equation: 

(33) 

1 pro = 2 

b ) P  + ( d P D  = 1 

where P(P’) is a general probability distribution for the ‘horizontal’ (‘vertical’) coupling 
constants. 

We shall now use equations (29), (30) and (31) to discuss the critical frontier of the 
Z(4) isotropic bond-dilute model in the square lattice. By associating with eachsite two 
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Ising variables pi and vi (pi, vi = *l) we can write the Z(4) Si variable as follows: 

1 -in/4 si = - (pi  e fi + vi ei”4). 

Consequently the Hamiltonian (17) can be rewritten 

(34) 

The relevant transmissivities of this random model are given (through equation (20)) by 

The t, 7 and U conjectures respectively provide 

1 + 2 t p  + tb” 
= t ~ l ’ “ t b ’ ’ + t ~ 2 ’ ) + 2 ( t b 1 ’ + t ~ ’ ) ’  

3(1+2tb1) + tb2’) 
= (2tb” + tb2’)(5 + 2tb1’ + ti2’) ’ (39) 

All three equations provide qualitatively the same surface (ABCDE in figure 1) in 
the (p, tb”, tb2’) space. This surface is expected to be a good approximation of 
the para-ferromagnetic CF in the region where the transition is unique. Let us now 
consider some limiting cases. In the plane ti” = O  (i.e. K?=O and tb2’ = 
[l - exp(-2K:)]/[ 1 + exp(-2K:)]) we have a bond-dilute Ising model CF (the asso- 
ciated king variable being piv i )  which corresponds to the line IIG of figure 1. We 
remark that in this case the Hamiltonian (35) is local gauge invariant; therefore, in 
accordance with Elitzur’s (1975) theorem, ( p i )  = ( v i )  = 0 (see also Alcaraz and Koberle 
1980, 1981) on both sides of the CF. In the plane ti’’ = 1 (i.e. Ki+co and rb” = 
[l - exp(-4KY)]/[l+ exp(-4KY)]) we have two CF. The first of them (line I2D of figure 
1) corresponds to a bond-dilute Ising model (whose coupling constant equals 2K?) 
associated with the variable p1 or vi. The second CF (straight line GD in figure 1) 
corresponds to the limit of a thermal problem (whose random variable is pivi)  which can 
be considered as a pure bond percolation one. It is then clear that, if the CF is 
continuous, the surface ABCDE must bifurcate on some line. It is well known that, on 
the plane p = 1, this bifurcation occurs on the Potts model (ti” = tb2’ = $; point B in 
figure 1); it seems plausible that this is still true on the bond-dilute problem (line BD of 
figures 1 and 2). As a direct consequence of the preceding considerations only the 
surface ABDE is concerned by equations (38)-(40). In what concerns the line AED of 
figure 1 we have not succeeded in formulating a clear interpretation (one plausible 
equation for that CF is ptb” = 1 for the line AE, the line ED being a straight one). To 
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t 

till 
0 

Figure 1. Phase diagram of the bond-dilute Z(4) model in the square lattice (the point E is 
here located according to the results obtained through the present approximations; it is 
however possible that the exact po equals 5). B (11,Iz and Ia) is (are) the pure Potts (Ising) 
critical point(s); the line BD (I1G and I2D) corresponds to bond-dilute Potts (Ising) 
model(s). P, F and I denote the para-, ferromagnetic and intermediate phases. 

summarise the preceding analysis, let us say that in the unitary cube of the (p, r b “ ,  tb”) 
space three phases exist, namely the paramagnetic (denoted by P; Z(4) symmetry), the 
ferromagnetic (denoted by F; completely broken symmetry) and the ‘intermediate’ 
(denoted by I;  Z(2) symmetry) ones, characterised by: 

( E L , )  = ( V I )  = (CLlV,) = 0 

(CLJ + 0 ;  ( V l )  # 0; (CLlVJ # 0 

(CL,) = (V,> = 0; (FPJ # 0 

(phase PI, 
(phase F), 
(phase I). 

We can verify directly in the Hamiltonian (35) that Ki = 0 (hence t,’ = (rb2’)1’2 = 
[l -exp(-2K:)]/[l +exp(-2K:)]) corresponds to the bond-dilute Ising model. In this 
case equations (38) and (40) recover previous results (Nishimori 1979, Tsallis and Levy 
1980, Levy er a1 1980, Tsallis 1981). 

In table 1 the most relevant numerical results are presented; we remark that the (T 

conjecture is globally rather better than the r one which in turn is better than the T one. 
In figure 3 we have presented the critical frontiers associated with different ratios 
K$O’/K:” ; the errors are expected to be not bigger than the graphical widths. 

The (T conjecture seems to be (see table 1) asymptotically exact in the limit p + 3 
(neighbourhood of point D of figure 1); it provides 
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+ " '  

Figure 2. Fixed p sections of the phase diagram of figure 1. (a) p = 1 ; (b) p = 0.8; (c) p = 0.7; 
(d) p = 0.6; (e) p = 0.53. The line BD corresponds to the bond-diiute Potts model. 

which recovers the exact answers for the Potts (KX/K? = f) and Ising (KB/K': = 0) 
models. Equation (41) leads to an interesting consequence: for all ferromagnetic 
models satisfying KB/Ky<$, (dtl/dp)p=lIZ equals -4 In 2 for fixed ratio KBIK?, 
whereas for K ; / K ?  = 8, (dtl/dp)p=1/2 equals -7 In 2. 16 

4. Conclusion 

We have introduced, for the general Z ( N )  s-simplex d-dimensional lattice model, 
convenient variables (transmissivities) which in series composition behave like prob- 
abilities. In what concerns parallel arrays it is possible, through a convenient trans- 
formation, to put the parallel composition algorithm in the same form as that of the 
series case. We have exhibited that this transformation is precisely the well known 
duality transformation. 

The simplicity of the present algorithms enables quite plausible approximations to 
be made for the critical frontiers for random Z(N) models. In order to illustrate this 
type of conjecture, the square lattice Z(4) bond-dilute ferromagnetic model has been 
discussed in detail. The phase diagram (see figure 1) exhibits, besides the usual para- 
and ferromagnetic phases, an intermediate one which is characterised by a partial 
breakdown of the Z(4) symmetry. A numerically interesting result is the p = $ limiting 
slope (equation (41)) which, within the present context, is expected to be exact. 

We have seen in 0 2 that the functional form of the relevant transformations does 
not depend on s (order of the s-simplex). Consequently the conjectural picture 
presented in Q 3 should hold for general Z ( N )  d/2-simplex-random ferromagnetic 
models in d-dimensional hypercubic lattices, thus reinforcing the common belief that 
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the gauge four-dimensional systems are very similar to the bond two-dimensional ones. 
In particular for the d/2-simplex-dilute model the ferromagnetic phase disappears at a 
probability p = 4. This remark suggests the possibility for defining a generalised 
s-simplex percolation whose critical probability is expected to be ifor s = d/2 and 1 for 
s = d, and which possibly corresponds to a generalisation of the Kasteleyn and Fortuin 
(1969) N + 1 limit. 

Table 1. Relevant quantities (calculated through the f, T and U conjectures) associated with 
the phase diagram represented in figure 1 (where the point E is located at p =PO). See the 
text for the values followed by (?). (a) Wu and Lin 1974; (b) Sykes and Essam 1963; (c) 
Baxter 1973; (d) Southern and Thorpe 1979; (e) Kramers and Wannier 1941; (f) Domany 
1978; (g) Harris 1974. 

r 7 D 

Conjectures (equation (38)) (equation (39)) (equation (40)) Exact 

In 2 
Po $=0.6 e, 14 - 0.64 ~ 3 0 . 6 3  f(?) 

to=l 

IO-Jz-1 

16 

22- 4 -6.25 

f.eO.67 

8 = 2.27 

1 z 

1 I 
4 

U- 5 -3.2 

1 I 

1 - 
k- 1 

t32.67 

4 

16 In 2 ~ 1 1 . 1  CO ( ? )  48 5 -9.6 _ -  

a =  0.75 1112.10.69 i(?) 

-- -2.61 2 ( ? )  
3(ln 3)’ 
21112 

E ~ 2 . 5 1  

- 1 
2 

5 
4 

1 
5 

1 

3 

I 
- 

5 

5 ib) 
1 (C) 

-- 16 5 -3.2 16 In 2 J 3.70 In 2 (d) 

1 I $ In 2 = 0.46 

?=2.4 4 In 2 = 2.77 4 In 2 (f) 

3 In 2 (6JZ- 8) 
--10.530 --0.490 
4 J z  JZ ==0.485(’) 
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U 0:s 1 

P 

Figure 3. Fixed K:/Ky ratio sections of the phase diagram of the bond-dilute Z(4) model in 
the square lattice. (a) Kz/Ky = 0.5 (Potts); (b) Kz/Ky = 0.3; (c) K : / K y =  0.25; (d) 
K ; / K y  = 0 (Ising); (e) K;/Ky = -0.3. P and F denote the para- and ferromagnetic phases. 
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